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Laminar boundary-layer reattachment in supersonic 
flow. Part 2. Numerical solution 
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(Received 29 January 1979) 

A possible model of the flow in the neighbourhood of a point of reattachment of a 
supersonic laminar boundary layer consists of a three-tiered ' triple-deck ' structure 
in which the basic problem reduces to that of solving the incompressible boundary- 
layer equations in the lower deck, a region of lateral and streamwise extent O(R-Q) 
and O(R-g), where R is a representative Reynolds number of the flow (Daniels 1979). 
The present paper describes a scheme for the numerical solution of this problem which 
provides evidence in support of the proposed model and quantitative values for the 
O(R-4) correction to the base pressure in the flow upstream and the O(R-g) correction 
to the position of reattachment relative to the point of intersection of the incoming 
shear layer and the wall. An important feature of the scheme is that it copes successfully 
with a flow which contains substantial reverse velocities. 

1. Introduction 
A recent study (Daniels 1979; hereinafter referred to as I) has suggested that a triple- 

deck structure of the type originally envisaged by Stewartson & Williams (1969) 
for the flow near a point of separation of a laminar boundary layer in supersonic flow 
may also provide a consistent model of the flow near a point of reattachment. The 
possible significance of the triple deck in this context had been recognized in the 
study of reattachment behind a backward-facing step by Messiter, Hough & Feo 
(1973), and in I it is shown that asymptotic solutions of the relevant equations can be 
formulated which are indeed consistent with the reattachment of the flow within the 
lower deck of the triple deck. The triple deck has lateral and streamwise length scales 
O(e3Z), where E < 1 is defined by 

= R = U,l/V,, (1 .1)  

and R is the Reynolds number of the flow based on a convenient length scale 1 and the 
velocity and kinematic viscosity of the external stream, denoted by U, and V ,  re- 
spectively. The triple deck divides laterally into three decks, the upper deck of height 
O(e3Z) which is inviscid and irrotational, the main deck of the same height O(e4Z) a8 
the boundary layer and the lower deck of height O ( A ) .  The fundamental problem 
reduces to the solution of the incompressible boundary-layer equations in the lower 
deck and in I a model of reattachment is proposed in which these equations must be 
solved in a domain 0 < x < 03, 0 < y < co, subject to a certain set of conditions a t  the 
boundaries of the region. Here x and y are scaled streamwise and lateral co-ordinates 
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in the lower deck, the incoming shear layer being supposed to strike the wall (y = 0) 
a t  the origin x = 0. Here an inviscid region of dimension O(&) provides most of the 
flow reversal but does not quite complete reattachment, as suggested in the earlier 
study of Burggraf (1970) and that of Messiter et al. (1973). These studies were con- 
cerned with the overall features of specific flow models rather than the actual flow in 
the reattachment region. I n  I the possibility that a triple-deck structure governs the 
latter is considered and it is shown that asymptotic solutions of the triple-deck equa- 
tions as x + 0 + and x + 03 may be constructed which are consistent with reattach- 
ment a t  a finite value of x. The triple-deck problem, as posed in I ,  is quite independent 
of the solution in the surrounding regions of flow and it is therefore possible, and it is 
our intention here, to consider its solution in isolation from the remainder of any 
specific overall flow. It should be stressed, therefore, that there is no guarantee that 
the present model of reattachment will necessarily fit into any specific overall flow 
pattern; as with any singular perturbation problem involving matched asymptotic 
expansions, a consistent solution throughout the entire flow field is only guaranteed 
when the solution in each region matches with solutions in all the surrounding regions. 
No such complete pattern has yet been found for configurations such as backward- 
facing steps, compression ramps or shock-wave boundary-layer interactions, although 
Messiter et al. (1973) suggest that their inviscid model, which is consistent with the 
assumptions of, and indicated the presence of, the triple-deck structure considered here 
and in I, may apply to such situations. Certainly in the case of a compression ramp 
or shock-wave interaction, some features of the model, such as the backward jet 
which emanates from the inviscid zone, appear to contradict the assumptions con- 
cerning the flow upstream and it is by no means clear that a consistent overall flow 
can be obtained. A further discussion of some of the problems involved is given by 
Smith (1979). By showing that the triple deck does apparently provide one possible 
mechanism for reattachment, the results of I and of the present study do tend to 
support the model of reattachment proposed by Messiter et al. (1973) but clearly do 
not guarantee its overall consistency in any way, 

Many numerical solutions of lower-deck problems have followed the method 
originally devised for the separation problem by Stewartson & Williams (1969), the 
injection solutions of Smith (1974) and trailing-edge solutions of the present author 
(1 974) providing examples in the supersonic case. Here the outer boundary condition 
(at y = CO) is dependent only upon the local value of x in contrast to the corresponding 
incompressible or subsonic flow (cf. Jobe & Burggraf 1974; Smith 1977). The major 
difficulties encountered with problems which involve separation and reattachment 
are concerned with the regions of reverse flow where the equations are no longer 
parabolic in the positive-x direction. Williams (1975) has improved his original 
separation solutions by extending his computational scheme into the reverse flow 
region beyond separation using the method developed by Fliigge-Lotz & Reyhner 
(1968) in which the nonlinear momentum term uau/ax is neglected wherever u < 0. 
Provided that the reverse flow is small, this solution may then be used as an initial 
approximation in which the final solution is developed iteratively using a series of 
upstream and downstream sweeps of the flow region. However, in the reattachment 
problem envisaged here, the reverse flow velocity u in the lower deck is O(x-l) as 
5 -+ 0 + (see 3 2 below) and it is unlikely that a similar treatment will suffice. Instead 
a more general method of the type devised by Klemp & Acrivos (1972) for computing 
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boundary-layer flows containing reverse flow regions is reqizired. There the domain 
is divided into regions of forward and reverse flow using an initial guess for the location 
y = g(x) of the curve along which u = 0 and the solution computed in opposite direc- 
tions from appropriate initial profiles in each region. A new estimate, based on the 
size of the discontinuity in the shear stress aulay, is then obtained for g(x) and the 
whole procedure repeated until this discontinuity is reduced to a required tolerance. 

The reattachment problem considered here is somewhat different from that of 
Klemp & Acrivos (1972) in a number of significant ways. First, the position of re- 
attachment, xR, is an unknown quantity which must be determined by the numerical 
scheme. Second, the outer boundary condition a t  y = co is different from that of the 
boundary-layer problem of Klemp & Acrivos; this allows the value of aulay along 
y = g(x) to be made continuous throughout the iterative scheme and the outer boun- 
dary condition then automatically provides the new estimate for g(x). Third, proper 
account must be taken of the severe singularity at x = O +  , where p = O(X-~) and 
u = O(x-l). Finally, as in a number of other triple-deck problems (see, for example, 
Smith 1974; Daniels 1974 and I) the lower deck pressure perturbation, p ,  must satisfy 
a prescribed boundary condition as x -+ co, which in this case is p -+ 0 as x -+ CO, and 
ensures that the triple-deck solution matches correctly with an attached boundary- 
layer flow downstream. The alternative would be the evolution of either the com- 
pressive solution in which separation occurs and p approaches a finite non-zero limit 
as x + 00, or the expansive solution which terminates in a singularity a t  a finite value 
of x (see Stewartson 1974). 

A statement of the system and its asymptotic properties (derived in I) is made in 
5 2 and a full description of the numerical scheme in 5 3. The results are presented in 
9 4 and are discussed in the light of experimental results in 3 5 .  

2. Statement of the problem 
We suppose a shear layer to be incident upon a wall y* = 0 a t  the origin of a set of 

Cartesian axes x*, y*. Then it is argued in I that an inviscid zone of dimension O(e4Z) 
surrounding the origin evolves a three-tiered structure in the downstream direction 
(x*/e4 -+ GO) which matches precisely with the three layers of a conventional triple 
deck where variations occur on the streamwise length scale 

Here A, = Mi(O), h = Ui(O), where U, and M, are the velocity and Mach number 
profiles which evolve from the inviscid zone as x*/e4 -+ 00, with U,(co) = U, and 
M,(co) = Ma, the external velocity and Mach number of the supersonic flow outside 
the triple deck. vw is the kinematic viscosity of the fluid at the wall. A crucial assump- 
tion of the theory made in I is that U,(O) = 0, the asymptotic form of the inviscid 
zone solution then suggesting that reattachment is not quite completed where 
x*/e4 = O ( l ) ,  thereby necessitating the presence of the triple deck downstream. I n  
the triple deck, the fundamental problem reduces to the solution of the following 
system in the lower deck where x and 
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are the order-one variables: 

au au ap a2u au av 
ax ay ax ay ,  ax ay 

u-+v- = --+- -i-- = 0, 

u = v = O  on y = O ,  (2.4) 

u -  y-A(x) as y-foo, 

p -  -21x2 as x-+O+, 

p+O as x + m ,  (2.7) 

where p(x) = A'(x). Here the physical velocity components u*, v* and pressure p* are 
related to u, v and p(x) by 

where y is the ratio of specific heats. 
The boundary condition (2.4) is the no-slip condition at the wall while (2.5) repre- 

sents the match with the solution in the main deck where u = U, + O ( E ) ,  and incor- 
porates the interaction with the supersonic flow outside the boundary layer which 
supplies the relation between the pressure and the displacement function A(x). The 
condition (2.6) is required if the solution is to be consistent with that in the inviscid 
zone at  x = 0 while (2.7) ensures the evolution of an attached boundary-layer flow 
downstream of the triple-deck region. 

The asymptotic properties of the lower-deck system have been derived in I and 
show that, as x -+ O +  , 

p - - 22-2 +pl + O(x2 I log xp, 2 2 ,  . . . ), 
A ~ x - ~ + P , z + o ( x ~  jiogxlt,~3, ...), (2.9) 

where pl is an arbitrary constant. The velocity field develops three distinct regions as 
x -+ 0 + , an inner viscous layer where 7 = y/x = O( 1)  and 

u - x-1(4-6tanh2[~+C,])+0(x,xj logx~~,  ...), C,= 1-146 ..., (2.10) 

a transitional layer where 0 = y/x ]log xl4 = O( 1)  and 

u - -2x- '+0(2~logxj~,x, . . . ) ,  (2.11) 

and an outer layer where y = O(x-1) and 

@ N {gy~-2yx-')-p1xy+C1+0(x2jlogX(~,s2, ...), c1 = 1.101 ...) 
u N {y - 22-11 -plx + o ( X 3  pogxp, 23, . . . ). (2.12) 

Here @ is the stream funct.ion defined by u = a@/ay, v = - a@/ax and we see that the 
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boundary of the reverse flow region y - 2/x  is located half-way between the wall 
and the dividing streamline @ = 0 where y N 4/x .  

Asx -+oo ,  

p N - k(C1- 3p1) X - 4 ,  A N 3k(C1 - 3p1) X-*, u = y + O(X-*), (2.13) 

where k = ( -  $)!/3$( - +)! = 0.317 .. ., a flux argument having been used to relate the 
coefficients of p and A to the value of the unknown constant p1 in the expansion of 
the pressure a t  x = 0. The value ofpl is one of the results which can only be determined 
from the numerical solution of the system and provides an O(e2) correction to the 
pressure in the inviscid zone upstream. The two expansions (2.10) and (2.13) suggest 
that a t  some point x = xR, with 0 < x ,  < 00, the skin friction vanishes and reattach- 
ment occurs, although again a full numerical solution is the only way of establishing 
this behaviour conclusively and of determining the value of xR, which is essentially 
the O(e3) correction to the distance of reattachment from the point of intersection 
of the incoming shear layer and the wall. 

3. The numerical scheme 

given by y = g(x) and define 
We suppose that the boundary of the reverse flow region (along which u = 0)  is 

jj = y -g (x ) ,  v = v-ug’(x). (3.1) 

If reattachment occurs a t  x = xR, we may suppose that g = 0 in the region x > x,  
so that there jj and 5 may be identified with the original variables y and v. The system 
(2.3), (2.4), (2.5) becomes 

I au -au ap a2u au av 
ax ay ax ay2’ ax ay 

u-+v- = --+- 

u = @ = 0 on jj = -g(x),  

u=O on j j = O ,  

u-j j+g-A as j j -+oo, 

-+_ = 0, 

where p = A‘,  and we treat each of the three regions ?j < 0, x < x,  (I, reverse flow), 
?j > 0, x < xR (11, forward flow) and jj > 0,  x > x ,  (111, forward flow) separately (see 
figure 1 ) .  

I n  region I the solution is computed by marching upstream in the negative x direc- 
tion from x,. Since the boundary of the region is a function of x ,  it is convenient to 
replace the variable jj by a new variable 6 defined by 

6 = 3lg(x),  (3.3) 

so that 6 varies between constant limits, - 1 < 6 < 0. I n  view of the asymptotic 
properties of the solution a t  x = 0 + we also write 

p = -2x-2+p1+P(x), g = 2x-l+p1x+G(x). (3.4) 

The new variables P and G then remain finite throughout the region and may therefore 
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FIGURE 1 .  The mesh pattern and flow regions in the x, plane. 

be discretized accurately even near x = 0. Adopting a similar treatment for the 
streamwise velocity we write 

u = X-~U,(X,~) for x < 1 ,  (3 .5)  

u = X2U2(x,tJ for 1 < x < x R ,  (3 .6)  

where X = x - x,, and use the variables U, and U, for x < 1 and x > 1 respectively. 
The first caters for the asymptotic structure (2.12) as x -+ 0 and the second for the 
neighbourhood of reattachment. 

Near reattachment we expect 

p , p ( x R ) + a X ,  9 %  - b X ,  as X - + O -  (3.7) 

and, since &/ay(x, 0) -+ 0 as X -+ 0, 

@ - cXy2+dy3,  u - 2cyX+3dy2,  v - -cy2, as X +  0, y -+ 0. (3 .8)  

Substitution into the equations of motion (2.3) and use of the fact that u = 0 on 
y = g determines the two constants c and d in terms of a and b as 

c = lab, d = &a. (3.9) 

Thus in terms of 6 we have 

u ~ + a b ~ X ~ ~ ( E + l )  for - 1 ~ 5 ~ 0 ,  as X + O - ,  (3.10) 

and the initial profile for U2 in region I is 

uZ(xR, 6 )  = &@6(6 + 1. (3.1 1 )  

Incidentally i t  also follows from (3 .9)  and (3 .8)  that the zero streamline @ = 0 
lies along y - - #bX as X -+ 0 and thus the curve of zero streamwise velocity y = g 
divides the region between the wall and the zero streamline in the ratio of 2:  1 at the  
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point of reattachment. This ratio adjusts to 1 : 1 as the inviscid region is approached 
upstream [see (2,12)]. 

Provided the pressure gradient which drives the system and the boundary of the 
reverse flow region are specified (i.e. dP/dx and G are known functions of X) the 
solution for U2 is computed upstream from the profile (3.11) by discretization of U2, 
P and G in the system 

onto a uniform mesh in x and 6, using central differences in the x direction, the formula 
(3.4) for g and the trapezium rule for V. At x = 1 the switch is made from U2 to Ul, 
(3.12) now being replaced by 

(3.13) 

a2ul aul - 
x2--gx2-v1-g~ 

at2 a t  

x2~l=x2@-gg'~xul  = -x  ---+pl 
dG 2 

(dx x2 

At the current x step, the profile U, or U2 is found from that a t  the previous upstream 
step, x +  Ax, by use of Newton iteration to linearize the system, the matrix form of 
which is then reduced to one superdiagonal and solved by forward substitution. 

From the solution in I we obtain the shear stress and normal velocity at = 0 - , 

V(x) = v(z,g) = qz, O),  (3.15) 

the values of W being stored at the mesh points and those of V mid-way between 
mesh points. Provided that P and G conform to the asymptotic behaviour (2.9) we 
expect that U, - 2t(-  1 < [ < 0 ) ,  W - 1 and V - -44/x3 as x-f O + ,  the last of 
these being evident from (3.13). Clearly inaccuracies will develop as x decreases 
despite the transformations (3.4)-(3.6) and in practice the solution is terminated at 
x = xo (xo > 0). To continue the solution further, a more sophisticated treatment 
would be required to obtain adequate resolution of the inner viscous region at  the 
wall, and this was not attempted. 

In  region I1 the solution now proceeds in the positive x direction from the initial 
profile 

u = g ,  o < g < o o  (3.16) 

at x = xo, the asymptotic form (2.12) inferring that this is correct to algebraic order 
in x as x -+ 0 + and thereby suggesting that relatively little inaccuracy is incurred in 
choosing even a relatively large value of xo > 0. An analogy with the method of 
Klemp & Acrivos (1972) would be to solve the system in I1 subject to u = 0, @ = V 
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on a = 0 and the outer conditions (2.5) as &! -+ co, using the same value of g(x) as in I. 
The solution would supply values of au/ay(x, g )  different from W ( x )  and an iterative 
formula would be required to estimate a new g(x) from this data; in the present prob- 
lem a more straightforward procedure is to apply the shear stress values obtained 
from I directly so that the flow is automatically continuous along = 0. Thus we 
solve I1 using the boundary conditions 

- 
u = 0, up = W(x) ,  w = V(x )  on g = 

u p + l  as g+oo 
'1 for x < x,, (3.17) 

the additional condition at 
which in terms of P and G becomes 

= 0 replacing the second outer boundary condition, 

u,+G'-P as j j -+00.  (3.18) 

The system, which is discretized using central differences in the x direction, is 

(3.19) 

and is now solved for u, 5 and P using (3.17) and marching downstream in the positive 
x direction. The value of U J X ,  00) then automatically determines a new estimate for 
the function G(x) from (3.18). Note that the system (3.17), (3.19) is independent of 
the value of p, and is solved essentially subject to the conditions P = 0, G = 0 a t  
x = 0. In  practice the computation begins at  x, but the asymptotic expansions of P 
and G involve x2 and x3 multiplied by infinite series of powers of llogxl* [see (2.9) 
and I] and truncations of these series are unlikely to be accurate for x near x, unless 
x, is very small. However it seems reasonable to suppose that the major variation in 
P and G near x, will be of approximately second and third degree in x (respectively) 
and so starting values 

P = aox2, G = box3 (3.20) 

were taken at x = x,, the values of a, and b, being determined from the previous itera- 
tion. The computation now proceeds from x, using a uniform mesh in x and g to 
provide the velocity profile and pressure at  x = xR. Direct use of W(x) ensures that 
the profile a t  X ,  is one with zero skin friction at  the wall and this is now used as the 
initial profile for the solution in region I11 which is computed downstream in a con- 
ventional manner using the dependent variables u and p ,  a uniform mesh in x and y 
and the full boundary conditions (2.4), (2.5). The attainment of the final boundary 
condition (2.7) as x -+ co depends upon the correct choice of the pressure at x = x,, 
too high or low a value resulting in the evolution of a compressive or expansive solution 
(respectively). The correct choice is achieved by adjustment of pl, for the actual 
pressure a t  X, is 

(3.21) 

and only P(x,) is fixed by the solution in 11. In practice p ,  must be adjusted by 
trial and observation so that several computations in I11 are required for each single 
computation in I and 11; note that since use of P and G renders the solution in I1 
independent ofp,, no recomputation of this region is necessary during each complete 
iteration of the flow field. 



Reattachment in supersonic $ow 137 

The full scheme is now described as follows: 
(1)  make initial guesses for G(x), P(x) ,  xR and p 1  (Go, Po, xRo and p,,  respectively); 
(2) solve in I using G, P ,  x R  and p 1  to obtain shear stress and normal velocity pro- 

(3) solve in I1 using W and V to obtain new pressure P(x)  = P,(x) and also new 

(4) select a value of p 1  = p,,  in (3.21) and solve for u(x, y) and p ( x )  in 111; 
(5) adjust p ln  and recompute in I11 until p -+ 0 as x + 00 (to within a required 

(6) form the new values of P ,  G and p1 from the old values and those obtained in 

files W(x) and V(x) at jj = 0; 

G ( x )  = G,(x) using (3.18); 

tolerance) ; 

stages 3-5 using a relaxation factor R ,  where 

P = RP,+(I-R)P, ,  

G = RG,+( l -R)Q, ,  

Pl = RPl,+ (1 --R)PI,,; 

g ( x )  = G(x) + 2 /x+p1x  

(7) calculate the new value of xE from the point at  which the new 

vanishes ; 
(8) set Po= P ,  etc., return to stage 2 and repeat the whole procedure until succes- 

sive iterates are identical to within a required tolerance. 
The reattachment position xR and the pressure coefficient p ,  are intended to con- 

verge to their true values and, provided the system is sufficiently under-relaxed and 
the initial guess for xR is large enough, its value gradually decreases to the final limit 
with successive iterations. The discretization of regions I and I1 is arranged so that 
the mesh points are always at fixed locations except for those located along the line 
x = xR,  which vary as xR varies. This means that the first x step in region I and the 
last x step in region I1 are generally shorter than the other steps, this being easily 
incorporated into the program. 

4. Numerical results 
The program was started from initial profiles P = 0 and 

(4.1) G =  0 for x <  Q ,  G =  -2x-l+5( 8 3 - 2 )  for Q < x <  3, 

with xRo = 3, plo = 0 and a, = b, = 0. The Newton iteration a t  each individual x step 
was computed to a tolerance of 10-7 in the values of the dependent variables. Step- 
sizes were initially set at Ax = 0.1, A[ = 0-02, Aij = 0.1 and Ay = 0.1 and in regions 
I1 and I11 outer boundaries were taken at  jj = 7.5 and y = 7.5. The small value of A t  
ensured adequate resolution of the inner boundary-layer structure (2.10) a.s the value 
of x decreased in I and for the same reason a relatively large value of x ,  = 0.4 was 
chosen. In fact the approach of the shear stress W to its limiting value of 1 as x + 0 
was found to be rapid and was generally achieved to within the order of at  x ,  
throughout the computation. 

The major inaccuracies in the scheme are thought to stem from the severe trun- 
cation of the Taylor series expansions of the variables and the use of the trapezium 
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FIUURE 2. Convergence properties of zB (- -) and pl (-) for various relaxation faotors. 

rule in the evaluation of the normal velocity component. The normal velocity is also 
particularly susceptible since it involves the x derivative of u and in the solution of 
region I it was found necessary to supply accurate values of the constants a and b in 
the initial profile (3.11) to avoid significant errors in the computation of V ,  even for 
just one upstream sweep of the region. The constants a and b were calculated from 
the current p ( x )  and g ( x )  profiles using polynomial extrapolation of their values a t  
the five mesh points upstream of xR.  Even so, with Ax = 0.1 the errors in V ( z )  were 
found to accumulate to unacceptable proportions after a large number of complete 
iterations of the flow field, eventually leading to an oscillation in P ( x )  [despite having 
comparatively little effect upon G ( x ) ]  before the system had adequately converged 
to a final state. Although reduction of Ax improved this, the computational time was 
correspondingly increased and so a polynomial fitting routine was used to smoothe 
the profiles of P and G after each iteration. This consisted of least squares approxi- 
mations to both P and G using polynomials of degree equal to approximately two- 
thirds of the number of mesh points between x,, and xR,  ensuring only very slight 
deviations from the actual function values at  the mesh points. This method, which 
was only a part-time device to aid convergence, was found to be effective and the 
values of p ,  and x R  converged successfully to limiting values as shown in figure 2. 
Several relaxation factors were tested, a value of R = 0.8 providing realistic results 
within about 30 complete iterations. On average, about 2 or 3 sweeps of region I11 
were required for each complete iteration of the flow field in order to obtain the solution 
in which p -+ 0 as x --f 00. In practice this consisted of requiring that p remained 
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I Y 

FIGURE 3. The final profiles P, c f ,  V and W .  

negative and monotonically increasing to as large a value of x as required (taken as 
x = 8). If p became positive it appeared that a compressive solution evolved as x -+ co 
(although an exhaustive search for a solution with a pressure overshoot was not carried 
out), while dpldx < 0 indicated that an expansive solution would develop downstream. 

The final results which are displayed in figures 3-6 were obtained by removing the 
polynomial fitting routine and also decreasing the step-size in regions I and I1 to 
Ax = 0.02. The results obtained from the A x  = 0.1 computations provided accurate 
initial profiles for P(x) and G(x) and only a few further iterations were required to 
reduce the difference of successive iterates to less than 5 x The final profiles of 
P, G ,  W and V in 0 < x < xR are shown in figure 3. In  figure 6 the velocity profiles 
show the reattachment of the flow at xR and it may be seen that the outer boundaries 
of jj and y a t  7.5 are more than adequate. The final values of xR and p l ,  which are 
believed to be accurate to two decimal places, were found to be 

XR = 1.94, = 0.11. (4.2) 

5. Discussion 
It has been confirmed numerically that the system of equations and boundary 

conditions derived in I has a solution which incorporates reattachment at a distance 
O(e31) downstream of the point of intersection of the incoming shear layer and the wall. 
The precise distance has been found to be 

(5.1) X* = 1 . 9 4 ~ ~ M ~ h * ( M 2 ,  - 1)-) ( ~ ~ / t ~ ) - * h $ .  
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FIGURE 4. Pressure p ,  skin friction au/ay(z, 0) and displacement function A .  

The numerical results also predict a positive O(e2) correction to the pressure in the 
inviscid zone just upstream of reattachment, its value where €4 < x * / 1 4  e3 being 

0.1 ls2ypm a, (M2, - l)-i A, A+( v,/@)'. (5.2) 

The results appear to be consistent with the available experimental evidence al- 
though a comprehensive comparison is not really possible without a more detailed 
resolution of the reattachment region in the experiments, and in any case, as pointed 
out in Q 1, the applicability of the theory to any specific flow configuration is by no 
means proven. Chapman, Kuehn & Larson (1958) present data for separated laminar 
flows at  high Reynolds numbers for a variety of geometries which also incorporate 
reattachment. These include flows caused by shock-wave boundary-layer interactions, 
on compression ramps and over backward-facing steps. Additional data for the step 
configuration is also provided by the experiments of Hama (1968) and Rom (1966), 
while for the compression ramp, numerical solutions of the full Navier-Stokes equa- 
tions have been carried out by Carter (1972) and for asymptotically small ramp angles 
by Burggraf, Jensen & Rizzetta (1975) using triple-deck theory. In all these studies 
it is generally found that the pressure curve always approaches its limiting value p ,  
through a monotonically increasing variation of the type produced in figure 4; al- 
though some experiments show a pressure overshoot, the overall evidence would 
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1 X 2 

FIGURE 5 .  Streamlines and the boundary of the reverse flow region, y = g(z). 

4 - 2  2 u 4  

FIGURE 6 .  Velocity profiles at various values of 2. 
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FIGURE 7.  Comparison with experiment. Continuous curves give theoretical pressure according 
to (5.7) and present results for K = 0.1, 0.2 and 1.0. Experimental data from Chapman et al. 
(1958) and Hama (1968) given by circles (step configuration), triangles (compression ramp) and 
squares (shock-wave intermtion). 

indicate that this is possibly experimental error. The large pressure variation pre- 
dicted by the inviscid zone solution upstream is consistently reproduced in the 
experiments but it must be remembered that here we are concerned with a much 
smaller variation which is therefore subject to experimental error to a greater extent. 

Despite the reservations made in Q 1 a selection of the more consistent experimental 
results for a range of reattachment problems is compared with the present theoretical 
results in figure 7. In  order to achieve this comparison the values of the constants 
A,& and vw must be supplied in (2.1) and (2.8). If we assume a linear viscosity law in 
which the coefficient of viscosity p = p, TIT,, where T is the temperature of the fluid 
and T, the temperature external to the triple deck, then 

where T, is the temperature of the wall. If in addition the Prandtl number of the 
fluid is unity and the we11 is thermally insulated, we have 
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where M, is the Mach number of the flow outside the triple deck. In  general circum- 
stances the velocity profile U, which enters the main deck of the triple deck and which 
supplies the value of h will depend upon the temperature, Mach number and geometry 
of the entire flow upstream of reattachment and thus no simple scaling law for h or 
A, is possible. However if the step height or ramp angle are small so that the external 
Mach number (M,) and temperature (T,) are approximately constant throughout the 
flow, then the upstream form of the compressible boundary-layer solution would 
suggest that we may write 

(5.5) 

where K is a numerical constant (i.e. independent of changes in M,, U,, T, etc.). 
The results of the approximate solution of Messiter et al. (1973) for the backward- 
facing step suggest that for that particular geometry K has a value of about 0.23. 
For general step heights or ramp angles, we can no longer assume that K will be 
independent of external conditions, although it always follows from (5.5) that 

and so we may write 

where 

We may therefore compare the left-hand side of (5.7), obtained from experiments, 
with the right-hand side, obtained from the present theory, for various values of K .  
As can be seen from figure 7 the experimental results for all three types of reattach- 
ment problem considered appear to lie within the range 0.2 < K < 1 with a value of 
K for the step problem fairly consistent with that predicted by the theory of Messiter 
et al. It should be stressed that any quantitative comparison between experimental 
results and the present theory is difficult to obtain. For instance, in theory the origin 
of the triple-deck region shouId be sited a t  the centre of the inviscid zone whereas in 
practice this cannot be located from the experimental results with any degree of 
accuracy; in figure 7 the origin has been chosen somewhat arbitrarily as the point at  
which one third of the reattachment pressure rise has occurred and of course the 
triple-deck theory is no longer relevant in this region. 

The author is grateful for useful discussions with, and encouragement from, Mr 
P. G .  Williams, Dr P. M. Eagles and Dr P. Bhattacharyya. 
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